Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cells ; 10(8)2021 08 05.
Article in English | MEDLINE | ID: covidwho-1348605

ABSTRACT

Sarcoidosis is a multisystem disease characterized by the development and accumulation of granulomas, the hallmark of an inflammatory process induced by environmental and/or infectious and or genetic factors. This auto-inflammatory disease mainly affects the lungs, the gateway to environmental aggressions and viral infections. We have shown previously that genetic predisposition to sarcoidosis occurring in familial cases is related to a large spectrum of pathogenic variants with, however, a clustering around mTOR (mammalian Target Of Rapamycin)-related pathways and autophagy regulation. The context of the COVID-19 pandemic led us to evaluate whether such genetic defects may increase the risk of a severe course of SARS-CoV2 infection in patients with sarcoidosis. We extended a whole exome screening to 13 families predisposed to sarcoidosis and crossed the genes sharing mutations with the list of genes involved in the SARS-CoV2 host-pathogen protein-protein interactome. A similar analysis protocol was applied to a series of 100 healthy individuals. Using ENRICH.R, a comprehensive gene set enrichment web server, we identified the functional pathways represented in the set of genes carrying deleterious mutations and confirmed the overrepresentation of autophagy- and mitophagy-related functions in familial cases of sarcoidosis. The same protocol was applied to the set of genes common to sarcoidosis and the SARS-CoV2-host interactome and found a significant enrichment of genes related to mitochondrial factors involved in autophagy, mitophagy, and RIG-I-like (Retinoic Acid Inducible Gene 1) Receptor antiviral response signaling. From these results, we discuss the hypothesis according to which sarcoidosis is a model for studying genetic abnormalities associated with host response to viral infections as a consequence of defects in autophagy and mitophagy processes.


Subject(s)
Autophagy , COVID-19/physiopathology , Sarcoidosis/physiopathology , COVID-19/enzymology , Genomics , Humans , Mitophagy , Protein Serine-Threonine Kinases , Sarcoidosis/enzymology , Exome Sequencing
4.
Trends Immunol ; 41(10): 856-859, 2020 10.
Article in English | MEDLINE | ID: covidwho-703987

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mainly affects the lungs. Sarcoidosis is an autoinflammatory disease characterized by the diffusion of granulomas in the lungs and other organs. Here, we discuss how the two diseases might involve some common mechanistic cellular pathways around the regulation of autophagy.


Subject(s)
Autophagy/drug effects , Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Pulmonary Edema/drug therapy , Sarcoidosis/drug therapy , Severe Acute Respiratory Syndrome/drug therapy , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Autophagy/genetics , Azithromycin/therapeutic use , Betacoronavirus/growth & development , COVID-19 , Chloroquine/therapeutic use , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/virology , Host-Pathogen Interactions/drug effects , Humans , Isoniazid/therapeutic use , Lung/drug effects , Lung/pathology , Lung/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Pulmonary Edema/epidemiology , Pulmonary Edema/genetics , Pulmonary Edema/virology , Rifampin/therapeutic use , SARS-CoV-2 , Sarcoidosis/epidemiology , Sarcoidosis/genetics , Sarcoidosis/virology , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL